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H I G H L I G H T S

� We develop a toxin-dependent predator–prey model.
� We examine how environmental toxin levels alter the balance of the classical predator–prey dynamics.
� We investigate the effect of methylmercury on rainbow trout and its prey.
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a b s t r a c t

Predators and prey may be simultaneously exposed to environmental toxins, but one may be more
susceptible than the other. To study the effects of environmental toxins on food web dynamics, we
develop a toxin-dependent predator–prey model that combines both direct and indirect toxic effects on
two trophic levels. The direct effects of toxins typically reduce organism abundance by increasing
mortality or reducing fecundity. Such direct effects, therefore, alter both bottom-up food availability and
top-down predatory ability. However, the indirect effects, when mediated through predator–prey
interactions, may lead to counterintuitive effects. This study investigates how the balance of the classical
predator–prey dynamics changes as a function of environmental toxin levels. While high toxin
concentrations are shown to be harmful to both species, possibly leading to extirpation of both species,
intermediate toxin concentrations may affect predators disproportionately through biomagnification,
leading to reduced abundance of predators and increased abundance of the prey. This counterintuitive
effect significantly increases biomass at the lower trophic level. Environmental toxins may also reduce
population variability by preventing populations from fluctuating around a coexistence equilibrium.
Finally, environmental toxins may induce bistable dynamics, in which different initial population levels
produce different long-term outcomes. Since our toxin-dependent predator–prey model is general, the
theory developed here not only provides a sound foundation for population or community effects of
toxicity, but also could be used to help develop management strategies to preserve and restore the
integrity of contaminated habitats.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There is increasing global concern over the effects of anthropogenic
and natural environmental toxins on ecosystem health. Industrial
toxins are one of the leading causes of pollution worldwide. Industrial
toxins may arise as a result of air emissions, water releases, water
seepage, air deposition or disposal and leaching of solid waste. Toxins
of concernmay also be transported through natural systems as a result
of weathering or leaching. The US Environmental Protection Agency
has designated 126 priority pollutants (U.S. National Archives and

Records Administration, 2013) and the Canadian Council of Ministers
of the Environment has a list of priority chemicals of concern for the
protection of aquatic life (Canadian Council of Ministers of the
Environment, 2003a). These priority substances include metals and
organic compounds.

The combination of natural and anthropogenic sources of toxins
present challenges with respect to the protection of local freshwater
resources. To protect ecological environments and aquatic species, it
is necessary to assess the risk to aquatic organisms exposed to toxins,
and find relevant factors that determine the persistence and extirpa-
tion of organisms. Kooijman and Bedaux (1996) describe how the no-
effect concentration can be estimated from data of standardized
aquatic toxicity tests: acute and chronic survival, body growth,
reproduction, and population growth.
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Over the past several decades, mathematical models have been
widely applied to perform chemical risk assessments on all levels
of biological hierarchy, from cells to organs to organisms to
populations to entire ecosystems. These models include popula-
tion models (scalar abundance, life history, individual-based, and
metapopulation), ecosystem models (food-web, aquatic and ter-
restrial), landscape models, and toxicity-extrapolation models
(Bartell et al., 2003; Galic et al., 2010; Pastorok et al., 2001,
2003). The selection of specific models for addressing an ecological
risk issue depends on the habitat; endpoints and chemicals of
interest; the balance between model complexity and availability of
data; the degree of site specificity of available models; and, the
risk issue (Pastorok et al., 2001). A comprehensive review of the
realism, relevance, and applicability of different types of models
from the perspective of assessing risks posed by toxic chemicals is
provided by Bartell et al. (2003) and Pastorok et al. (2001).

In practice, toxin-dependent individual-based models and
matrix population models are widely used to evaluate the ecolo-
gical significance of observed or predicted effects of toxic chemi-
cals on individual organisms and population dynamics. Despite the
nonlinear dynamical nature of population-toxin interactions, our
search of the literature shows that relatively few differential
equation models have been developed to describe population-
toxin interactions (but see Freedman and Shukla, 1991; Hallam and
Clark, 1983; Hallam et al., 1983; Luna and Hallam, 1987; Thieme,
2003; Thomas et al., 1996). For those models that do exist,
interactions are usually described by a system, which contains
components representing the population density, the concentra-
tion of toxin in an organism, and the environmental concentration
of toxin.

Recently, we developed a toxin-dependent model given by a
system of differential equations, to describe the impact of con-
taminants on fish population dynamics (Huang et al., 2013).
Because the concentration of toxin in the environment is not
affected significantly by mortality or metabolic processes of
population, our toxin-dependent model focused on the impact of
toxin on the population and ignores the influence of the popula-
tion on the concentration of toxin in the environment. The
concentration of toxin in the environment hence was treated as
a parameter. The model was connected to literature-sourced
experimental data via model parameterization of the toxic effects
of methylmercury on rainbow trout (Oncorhynchus mykiss). The
parameter estimates were then used to illustrate the long-term
behavior of rainbow trout population. The numerical results
provided threshold values of concentration of methylmercury in
the environment to maintain populations and prevent extirpation.

It is significant that all above-mentioned differential equation
models are single-species models in which populations are
assumed to take up toxin only from exposure to the environment.
However, it is well recognized that the primary route of toxin
uptake in higher-trophic level organisms (predators) is via food
ingestion. As one organism eats another, it also eats the pollutants
in its prey. The higher up the food chain, the more the pollutants
that are eaten and stored. This build-up of toxic pollutants is
referred to as bioaccumulation (Arnot and Gobas, 2004; Mackay
and Fraser, 2000; Mathew et al., 2008). Bioaccumulation means
that the nonlinear effects observed in ecosystems cannot often be
described or understood through studying species individually
because food web interactions must be considered (e.g., Kidd et al.,
2007). A review on bioaccumulation criteria and methods is
provided in Gobas et al. (2009). Moreover, Kelly et al. (2007) and
Thomann (1989) developed bioaccumulation models.

In this work, we evaluate the flow of contaminants through a
simple aquatic food web and study how the transfer of contami-
nants between trophic levels affects food web dynamics. We do
this by extending the single-species toxin-dependent model in

Huang et al. (2013) to a predator–prey model with toxin effect. Our
model consists of four equations. The first and second equations
describe the prey and the predator growth rates, respectively,
where the birth and death rates are explicit functions of body
burdens. Body burden, which is also referred to as tissue residue in
McElroy et al. (2010), is a direct measurement of toxin concentra-
tions in the tissue or organism rather than in the exposure media.
The third and fourth equations are the balance equations for the
body burden of the two species, which describes the accumula-
tion, the dilution of toxin in the organism tissue, and the transfer
of toxin from prey to predator.

This model is then connected to experimental data via model
parameterization. In particular, we consider the toxic effects of
methylmercury on rainbow trout (Oncorhynchus mykiss) and its
prey (small fish or aquatic insects) and obtain an appropriate
estimate for each model parameter. The results of model parame-
terization and model analysis are used to numerically solve the
model, and analyze the effect of the methylmercury on the end
behavior of rainbow trout and its prey (small fish or aquatic insects).
To qualitatively investigate the model, we simplify it to a two-
dimensional system via a quasi-steady state approximation. We
analyze the quasi-steady system by studying the effect of toxin level
in the environment on existence and stability of steady states.

If there is no toxin, our toxin-dependent predator–prey model
reduces to a classical predator–prey model, whose dynamics have
been well studied. Thus, the main objective of this study is to
investigate how the balance of the classical predator–prey
dynamics will change when the toxin level in the environment
varies from zero to higher levels. From our analysis and numerical
exploration of the food web toxin model we found that toxin
concentrations affect organisms at different trophic levels in a
variety of ways. For example, high toxin concentrations in the
environment are harmful to both species, and may lead to
extirpation of both species. However, low toxin concentrations
produce counterintuitive results. That is, contaminant effects on
predators can actually lead to increased abundance of the prey.

The existence of limit cycles, where both population levels
fluctuate around a coexistence equilibrium, is found in most classical
predator–prey models. Our findings show that increasing toxin level
may reduce and prevent populations from fluctuating when the
predator and the prey are exposed simultaneously to a toxin.

Unlike most standard predator–prey systems, where popula-
tions will eventually tend towards only one stable steady state, our
findings indicate that with a toxic effect, predator–prey systems
may lead to multiple possible long-term outcomes. In this sce-
nario, the initial population level will determine the final fate.

The rest of this paper is organized as follows. In Section 2, we
develop a toxin-dependent predator–prey model. In Section 3, we
connect the model to experiment data via model parameteriza-
tion. We apply the results of model parameterization to consider
the toxic effects of mercury on rainbow trout and its prey (small
fish and aquatic insects). In Section 4, we reduce the dimension-
ality of the model using a quasi-steady state approximation. We
then analyze the existence and stability of extinction and coex-
istence equilibria based on the quasi-steady system. In Section 5,
we show possible asymptotic dynamics of the model. In Section 6,
we study how toxin level in the environment affects the long-term
behavior of the populations. Finally, a brief “Discussion” section
completes the paper.

2. Model formulation

Since we are interested in an aquatic environment, we for-
mulate the model in terms of concentration of population biomass,
concentration of toxin in the population, and concentration of
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toxin in the environment. In this study, we let

Concentration of population biomass

¼ total mass of all individuals in the population
volume of the total aquatic environment where the population lives

;

Concentration of toxin in the population

¼ total mass of toxin contained in the population
volume of the total aquatic environment

;

Concentration of toxin in the environment

¼ total mass of toxin in the environment
volume of the total aquatic environment

;

and

Body burden of population

¼ total mass of toxin contained in the population
total mass of all individuals in the population

:

The state variables of the model are x¼ xðtÞ, the concentration
of prey biomass in g/L at time t; y¼ yðtÞ, the concentration of
predator biomass in g/L at time t; U ¼ UðtÞ, the concentration of
toxin contained in the prey in μg=L at time t; V ¼ VðtÞ; the
concentration of toxin contained in the predator in μg=L at time
t; u¼ uðtÞ, the body burden of the prey in μg=g at time t; v¼ vðtÞ,
the body burden of the predator in μg=g at time t.

A mathematical model that describes the effect of toxin on the
predator–prey system is given by

with appropriate initial conditions, which describe the initial con-
centrations of prey and predator biomass and toxin concentrations.

The first equation presents a generic description of the growth
of prey under the influence of the toxin. The second equation
describes the growth of predator under the influence of the toxin.
The third and fourth equations are balance equations for the
concentrations of the toxin contained in the individuals of prey
and predator, respectively.

The function bðu; xÞ represents the biomass gain rate of the prey
due to reproduction and growth; d1ðuÞ denotes the biomass loss
rate of the prey due to death; d2ðvÞ represents the biomass loss
rate of the predator due to death; p(x) is the predator functional
response that specifies the rate at which prey is consumed, per
predator, as a function of the prey density; e(v) is the production
efficiency. We will introduce specific expressions for the functions
bðu; xÞ, d1ðuÞ, d2ðvÞ, p(x), and e(v) at the end of this section.

The toxin uptake rates by the population from the environ-
ment, a1Tx and a2Ty, are modeled according to the Law of Mass

Action and are proportional to both the concentration of toxin in
the environment, T, and the concentration of population biomass,
In this model a1 and a2 are the uptake coefficients for the prey and
the predator, respectively. The positive constants σ1 and σ2 are the
toxin depuration rates of the prey and the predator, respectively
due to the metabolic process. The death of an individual leads to
not only a loss of population biomass, but also a loss of internal
toxin concentration. This leads to the term �d1ðuÞx in the first
equation and the term �d1ðuÞU in the third equation. The
predation of prey by predator leads to both a loss of the prey
biomass and a gain of the predator biomass; accordingly, it leads
to a transfer of toxin from the prey to the predator. This results in
the term �pðxÞyu in the third equation and the term pðxÞyu in the
fourth equation.

From the first two equations of the model (1), we notice that
the direct influences of toxin on the growth of populations are
implemented through their body burdens u and v. This motivates
us to write down the equations describing the rate of change of u
and the rate of change of v. As we will see, this allows us to study
an equivalent system involving four state variables and four
equations, instead of the model (1) which includes six state
variables and six equations.

From the fifth equation of (1), we have

du
dt

¼ U0

x
�U
x
x0

x
: ð2Þ

Substituting the first equation and the third equation of (1) into
(2), we obtain

du
dt

¼ a1T�½σ1þd1ðuÞ�u�
pðxÞy
x

u� bðu; xÞ�d1ðuÞ�
pðxÞy
x

� �
u

¼ a1T�σ1u�bðu; xÞu: ð3Þ

Similar calculations in terms of the last, second and fourth
equations of (1) give

v0 ¼ V 0

y
�V
y
y0

y
¼ a2T�σ2vþpðxÞ½u�eðvÞv�: ð4Þ

Combining the first two equations of (1) and Eqs. (3) and (4), we
have

dx
dt

¼ bðu; xÞx�d1ðuÞx�pðxÞy;

dy
dt

¼ eðvÞpðxÞy�d2ðvÞy;

dx
dt|{z}

rate of change of the concentration of prey biomass

¼ bðu; xÞx|fflfflfflffl{zfflfflfflffl}
gain due to birth and growth

� d1ðuÞx|fflfflffl{zfflfflffl}
loss due to death

� pðxÞy|fflffl{zfflffl}
loss due to predation

;

dy
dt|{z}

rate of change of the concentration of predator biomass

¼ eðvÞpðxÞy|fflfflfflfflfflffl{zfflfflfflfflfflffl}
gain due to birth and growth

� d2ðvÞy|fflfflffl{zfflfflffl}
loss due to death

;

dU
dt|{z}

rate of change of the concentration of toxin in the prey

¼ a1Tx|ffl{zffl}
uptake from environment

� σ1U|{z}
depuration due to metabolism

� d1ðuÞU|fflfflfflffl{zfflfflfflffl}
loss due to death

� pðxÞyu|fflfflffl{zfflfflffl}
loss due to predation

;

dV
dt|{z}

rate of change of the concentration of toxin in the predator

¼ a2Ty|ffl{zffl}
uptake from environment

� σ2V|{z}
depuration due to metabolism

� d2ðvÞV|fflfflffl{zfflfflffl}
loss due to death

þ pðxÞyu|fflfflffl{zfflfflffl}
gain due to predation

;

u¼ U=x|fflfflfflfflffl{zfflfflfflfflffl}
body burden of prey

; v¼ V=y|fflfflfflfflffl{zfflfflfflfflffl}
body burden of predator

; ð1Þ
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du
dt

¼ a1T�σ1u�bðu; xÞu;
dv
dt

¼ a2T�σ2vþpðxÞ½u�eðvÞv�: ð5Þ

We now introduce specific forms for the functions bðu; xÞ, d1ðuÞ,
d2ðvÞ, p(x), and e(v). Following Huang et al. (2013), we let

bðu; xÞ ¼ α1 maxf0;1�α2ug
1þα3x

; ð6Þ

with positive constants αi ði¼ 1;2;3Þ. Here the term α1=ð1þα3xÞ,
which is a decreasing function with respect to prey biomass,
represents a density-dependent per unit biomass gain rate. The
term maxf0;1�α2ug, which is a fraction between 0 and 1, repre-
sents a linear dose response for the gain rate. If there is no toxic
effect (body burden u¼0), then maxf0;1�α2ug ¼ 1, hence the gain
rate of prey biomass is given by α1=ð1þα3xÞ. If the body burden u
reaches a threshold level 1=α2, then the individuals in the prey stop
reproduction and growth, hence the gain rate of prey biomass is 0.
A derivation of the expression (6) from a resource–consumer model
via a time scale argument is presented in Thieme (2003).

In 1992, the committee on toxicology of the National Research
Council recommended the use of the power law to study the
relationship between toxin concentration and mortality rate since
it has been shown to fit the data well (Miller and Janszen, 2000).
Here, for model analysis, we assume a special case of power law
with power one. That is, we assume that mortality rates d1ðuÞ and
d2ðvÞ linearly depend on their body burdens u and v, respectively.
Thus, taking natural mortality rates into account, we let

d1ðuÞ ¼ k1uþm1; d2ðvÞ ¼ k2vþm2; ð7Þ

where k1;m1; k2;m2 are positive constants.
The predator functional response describes a predator's per

capital feeding rate. Here we use a Type II functional response
(Holling, 1959) which is more realistic than Type I (e.g., Polis et al.,
1989) as it incorporates predator satiation through the assumption
that predators have a prey handling time. In this case, the per
capita feeding rate of the predator is given by a function of the
form

pðxÞ ¼ γx
1þγhx

; ð8Þ

where γ is the encounter rate (or capture efficiency) and h is the
handling time.

For convenience, many researchers rewrite the above Type II
functional response as

pðxÞ ¼ ξx
ηþx

; ð9Þ

where ξ¼ 1=h and η¼ 1=ðγhÞ (Kot, 2001). Since pðηÞ ¼ ξ=2, η is
referred as the half-saturation constant. In this study, we choose
(9) as the expression of the functional response.

We assume that the dependence of the reproduction efficiency
of the predator on its body burden v is given by

eðvÞ ¼ β1 maxf0;1�β2vg; ð10Þ

here 0oβ1o1. The term maxf0;1�β2vg represents a linear dose
response for the reproduction efficiency. If there is no toxic effect
(body burden v¼0), then maxf0;1�α2ug ¼ 1, hence the reproduc-
tion efficiency is β1. If the body burden v reaches a threshold level
1=β2, the reproduction efficiency is 0, which means that predators
stop reproduction and growth.

Therefore, in this study we propose the following toxin-
dependent predator–prey system

In the absence of predator, the model (11) reduces to the one
species toxin-dependent model studied in Huang et al. (2013).

3. Parameterization and numerical results

While our toxin-dependent predator–prey model (11) is gen-
eral, we apply it to consider the effect of a toxin on the dynamics
of fish and its prey. In this section, we first describe the para-
meterization of the model (11) by choosing rainbow trout as our
representative predatory fish and small fish or aquatic insects as
the prey. The results of model parameterization are then used to
illustrate the impact of methylmercury on the long-time behavior
of rainbow trout and its prey (small fish or aquatic insects).

Rainbow trout are found widely throughout the world. How-
ever some populations such as the native rainbow trout popula-
tion in the Athabasca River, Alberta, and rainbow trout found in
watersheds west of the Cascade Mountains in the U.S. are
threatened. Rainbow trout routinely feed on larval, pupal and
adult forms of aquatic insects (typically caddisflies, stoneflies,
mayflies and aquatic diptera), and small fish up to one-third of
their length.

The toxic effects of methylmercury exposure in fish and wildlife
species are well documented (reviewed by Sandheinrich and

dx
dt|{z}

rate of change of the concentration of prey biomass

¼ α1 maxf0;1�α2ugx
1þα3x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gain due to birth and growth

� ðk1uþm1Þx|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
loss due to death

� ξxy
ηþx|ffl{zffl}

loss due to predation

;

dy
dt|{z}

rate of change of the concentration of predator biomass

¼ β1ξxymaxf0;1�β2vg
ηþx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gain due to birth and growth

� ðk2vþm2Þy|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
loss due to death

;

du
dt|{z}

rate of change of the body burden of the prey

¼ a1T|{z}
uptake from environment

� σ1u|{z}
depuration due to metabolism

� α1 maxf0;1�α2ug
1þα3x

u|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dilution due to birth and growth

;

dv
dt|{z}

rate of change of the body burden of the predator

¼ a2T|{z}
uptake from environment

� σ2v|{z}
depuration due to metabolism

þ ξx
ηþx

u|fflffl{zfflffl}
gain due to predation

� ξx
ηþx

β1 max 0;1�β2v
� �

v|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dilution due to birth and growth

: ð11Þ
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Wiener, 2011). The United States Geological Survey developed the
National Descriptive Model for Mercury in Fish (Wente, 2004) to
partition variation in methylmercury concentration due to size,
species and sample type across space and time. The Canadian Fish
Mercury Database includes over 330,000 records representing 104
species of freshwater fish collected from over 5000 locations
across Canada between 1967 and 2010 (Depew et al., 2013).
Mercury may be released into the aquatic environment in states
of relatively low toxicity, but will be transformed into highly toxic
states, namely methylmercury. Mercury's harmful effects on fish
include death, reduced reproduction, slower growth and develop-
ment, and abnormal behavior (Eisler, 1987). Methylmercury is of
special concern, not only because of its toxicity, but also because of
its tendency to biomagnify in upper trophic levels of aquatic food
webs (Canadian Council of Ministers of the Environment, 2003b).

As we mentioned earlier, in the absence of the predator, the
toxin-dependent predator–prey system (11) reduces to a one species
toxin-dependent model which we developed in Huang et al. (2013).
Therein, we considered the toxic effect of methylmercury on rainbow
trout (Oncorhynchus mykiss) and obtained an appropriate range for
each model parameter. To make parameterization for the model (11),
we first apply the results of parameter estimate in Huang et al. (2013)
to those predator-related parameters in the model (11). We then
connect the model to experiment data to estimate the prey (aquatic
insects)-related parameters.

3.1. Predator (rainbow trout)-related parameters

The parameter estimate results in Huang et al. (2013) are given by
certain ranges (intervals), and here we take the midpoint of intervals
as the corresponding parameter values and obtain the following:
β2 ¼ 33:41 in g=μg, k2¼0.00398 in g=μg=day,m2¼0.00057 in day�1,
a2¼0.1733 in day�1, and σ2 ¼ 0:0062 in day�1.

The carrying capacity of rainbow trout was estimated as
η¼0.00091 in g/L, hence we take the half-saturation constant
η¼0.000455 in g/L.

The maximum growth rate of rainbow trout is estimated as
0.0047 in day�1. This corresponds to the term β1ξx

ηþ x in (11). For
simplicity, letting β1ξx

ηþ x¼ 0:0047 and x-1, we get β1ξ¼ 0:0047 in
day�1. It is commonly assumed that transfer efficiency between
trophic level is 0.1 (Bax, 1998). Letting β1 ¼ 0:1, we obtain ξ¼0.047
in day�1.

3.2. Prey (aquatic insects)-related parameters

It is difficult to find experimental results for one species of
aquatic insects to estimate all model parameters. In what follows,
we choose data for several related species to roughly estimate the
prey related parameters in the model (11).

3.2.1. Maximum reproduction rate α1 and natural mortality rate m1

We choose caddisflies to estimate maximum reproduction rate
α1 and the natural mortality rate m1 for the prey. The caddisflies are
an order, Trichoptera, of insects with approximately 12,000
described species. Caddisflies in most temperate areas complete
their life cycles in a single year, from egg to larva, to pupa, then
adult; most caddisfly larvae (caddis worms) live about one year in
the aquatic environment before pupating; The adult stage of
caddisflies, in most cases, is very short-lived, usually only 1–2
weeks. Caddisfly adults live just long enough to mate, they do not
eat and focus only on reproduction. Each adult female can lay up to
800 eggs (Hildrew and Rüdiger, 1992). Willis and Hendricks (1992)
studied the life history and production of hydropsychid caddisflies
in Mill Creek, Virginia. They found that only about 0.5% of the
original eggs survived to adulthood. This finding is in close

agreement with the findings of Elliott (1981, 1982) that survival
to reproduction in Philopotamus montanus was 0.4% and survival
from egg to imago in Potamophylax cingulatus was 1–2%. By
assuming 1:1 female–male ratio we choose the maximum repro-
duction rate of caddisflies α1 ¼ 800� 0:5� 1%=365¼ 4=365 in
day�1.

We take the natural mortality rate m1 ¼ 1=365 in day�1 by
assuming that the average natural life span of caddisfly is 365 days.

3.2.2. Crowding effect α3
We estimate the crowding effect parameter α3 by using the

estimated carrying capacity of aquatic insect populations in the
literature (Gilpin and Ayala, 1973). The carrying capacities of two
species of Drosophila were estimated by fitting two analytic
models to experimental data. The mean of the carrying capacities
of two species, denoted by K, is 0.0011 g/L. We use the carrying
capacity, K, to the crowding effect parameter α3 as follows.

If there is no toxin or predation, the first equation of (11)
becomes

dx
dt

¼ α1
1þα3x

�m1

� �
x¼

ðα1�m1Þ 1� x
K

	 

x

1þα3x
; ð12Þ

with

K ¼ α1�m1

m1α3
: ð13Þ

Notice that α1�m1 is always positive from the estimated values
for α1 and m1. It is not difficult to check that K plays the role of the
carrying capacity as with the logistic equation. Using the above
equation and taking the estimates of α1 and m1 into accounting,
we obtain α3 ¼ 1330 in L/g.

3.2.3. Uptake rate a1 and depuration rate σ1
Next we estimate the toxin-related parameters in the model

(11) for aquatic insects. The uptake rate constants and depuration
rates for mercury by four aquatic insect species (two caddisflies
and two mayflies) were estimated by Xie et al. (2009). We choose
uptake coefficient of the prey (aquatic insects) to be the mean of
the four uptake rate constants and obtain the estimate: a1¼0.55 in
L/g/day. We choose depuration rate of aquatic insects to be the
mean of the four depuration rates and obtain the estimate:
σ1 ¼ 0:12 in day�1.

3.2.4. Effect of toxin on reproduction α2
Abnoos et al. (2013) studied the effect of mercury on the

development of stage of eggs to adult fruit fly (Drosophis melano-
gaster). They showed that the maturity percentage and percentage
of hatched eggs of the fruit fly are approximately 100% in 10 μg=L
of methyl mercury (Table 1 in Abnoos et al., 2013). We use this
data to estimate the parameter α2 that describes the effect of toxin
on reproduction of the prey. From the third equation of system
(11), the relationship between the concentration of mercury in the
environment T and the body burden of fruit fly u is approximately
given by

u¼ a1
σ1
T : ð14Þ

(This quasi-steady state approximation will be discussed in Section
4.2.) We choose the threshold body burden 1

α2
¼ a1

σ1
T , at which fruit

fly stop reproduction. Using the above estimates of a1 and σ1 and
letting T ¼ 10 μg=L, we estimate α2 ¼ 0:022 in g=μg. This estimate
implies that fruit fly is much less sensitive to mercury than
rainbow trout since α2 is much less that β2 (equal to 33:41 g=μg)
that describes the effect of methylmercury on the reproduction of
rainbow trout.
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3.2.5. Coefficient of mortality rate k1
The lethal and sublethal responses of an aquatic insect, the

southern house mosquito (Culex quinquefasciatus: Diptera), to a
range of methyl mercury concentrations were studied by Jensen
et al. (2007). The percent mortalities of Culex quinquefasciatus are
28.5%, 29%, 44.5%, and 93%, respectively when exposed to 1:5 μg=L,
3 μg=L, 7:5 μg=L and 15 μg=L methylmercury, for 11 days (Table 1 in
Jensen et al., 2007).

The relationship between the percent mortality after t days,
denoted by p0ðtÞ, and the toxin related mortality rate k1u was
described by

p0ðtÞ ¼ 1�expf�k1utg ð15Þ

in Huang et al. (2013). Substituting (14) into (15) and letting t¼11
in day, a1¼0.55 in L/g/day, σ1 ¼ 0:12 in day�1 (estimated in
Section 3.2.3), we have

p0ðtÞ ¼ 1�exp �k1
a1Tt
σ1

� �
: ð16Þ

Using the mortality rate function (16) and employing Matlab
routine LSQCURVEFIT to fit the above-mentioned data (Table 1 in
Jensen et al., 2007), we obtain parameter estimate k1¼0.0021 in
g=μg=day.

We list rainbow trout- and aquatic insect-related parameter
estimates in Table 1.

3.3. Numerical results

In what follows, we use the parameter estimates from Sections
3.1 and 3.2 to numerically solve the toxin-dependent predator–
prey model (11). Our purpose is to understand how the concen-
tration of methylmercury in the environment affects the long-term
biomass of rainbow trout and its prey. We make numerical
simulations by considering two predator–prey scenarios.

In the first scenario, we regard the rainbow trout as the
predator and small fish as the prey. We assume that the small
fish have the same vital rates and same sensitivity to methylmer-
cury as the rainbow trout, and directly apply the results of model
parameterization in Huang et al. (2013) to those prey-related
parameters in the model (11). We plot the stable biomass of the
prey (small fish) and the predator (rainbow trout) as the concen-
tration of methylmercury increases from 0 to 0:0025 μg=L in Fig. 1.

In the second scenario, we regard the rainbow trout as the
predator and aquatic insects as the prey. We apply the results of
model parameterization from Sections 3.1 and 3.2 to the model
(11). We plot the stable biomass of the prey (aquatic insects) and

the predator (rainbow trout) as the concentration of methylmer-
cury in the environment changes from 0 to 0.01 g/L in Fig. 2.

Fig. 1 shows that the stable predator (rainbow trout) biomass
decreases as the concentration of methylmercury in the environ-
ment T changes from 0 to higher levels, which implies that the
toxin is always harmful to the predator. However, as T increase but
still at low levels, stable prey biomass increases, which indicates
that low toxin concentrations benefit the prey (small fish). This is
because toxic effects on the predator reduce its prey from preda-
tion. It can be observed that the threshold value of T for the
rainbow trout extirpation is around 0:0020 μg=L even though the
stable population level becomes very low as T reaches around
0:0005 μg=L. This result can be compared to that in our earlier
work (Huang et al., 2013) based on a single-species model.
Therein, we showed that the rainbow trout biomass decreases
from a low level until it becomes extirpated when T increases from
0.0011 to 0:0045 μg=L (Fig. 3 in Huang et al., 2013). This is because
unlike the previous single-species model in which rainbow trout
was assumed to take up toxin only from water hence bioaccumu-
lation (toxin uptake via food ingestion) was ignored, the toxin-
related predator–prey model (11) considers two routes of toxin
uptake by the predator. That is, rainbow trout uptake the toxin
from both water and their food (small fish). The bioaccumulation
in the higher-trophic level population (predator) leads to a higher
body burden, which results in a lower threshold value of toxin in
the environment for the predator extirpation.

Fig. 2 illustrates that the stable predator biomass decreases as the
concentration of methylmercury increases, which leads to the stable
aquatic insects biomass increasing until it reaches its environmental
carrying capacity. This is because aquatic insects are much less
sensitive to methylmercury than rainbow trout (see Section 3.2.4),
when the toxin level in the environment is sufficiently high such that
rainbow trout become extirpated, its prey (aquatic insects) is still be
able to grow. Fig. 2 also shows that the threshold value of T for the

Table 1
Rainbow trout- and aquatic insect-related parameters.

Symbols Definitions Estimate values

α1 Maximum reproduction rate of aquatic insects 4/365 day�1

α2 Effect of toxin on the growth of aquatic insects 0:022 g=μg
α3 Crowding effect of aquatic insects 1330 L/g
k1 Effect of toxin on the mortality of aquatic insects 0:0021 g=μg=day
m1 Natural mortality rate of aquatic insects 1/365 day�1

ξ Per capita feeding rate 0.047 day�1

η Half-saturation constant 0.000455 g/L
β1 Reproduction efficiency of rainbow trout 0.1
β2 Effect of toxin on the reproduction of rainbow

trout
33:41 g=μg

k2 Effect of toxin on the mortality of rainbow trout 0:00398 g=μg=day
m2 Natural mortality rate of rainbow trout 0.00057 day�1

a1 Uptake coefficient for aquatic insects 0.55 L/g/day
σ1 Depuration rate for aquatic insects 0.12 day�1

a2 Uptake coefficient for rainbow trout 0.1733 L/g/day
σ2 Depuration rate for rainbow trout 0.0062 day�1
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Fig. 1. The stable biomass of the prey (small fish) and the predator (rainbow trout)
when the concentration of methylmercury in the environment changes from 0 to
0:0025 μg=L.
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rainbow trout extirpation is around 0:006 μg=L, which is higher than
that shown by Fig. 1. The reason for this is because the high prey
density (aquatic insects) provides abundant food for the predator
(rainbow trout) such that the predator is still able to survive in a
environment with relatively high toxin concentrations.

4. Model analysis

We expect that the dynamics for the depuration due tometabolism
of toxin will operate on a much faster time scale than the dynamics of
population biomass growth. This means that the body burden
equations may approach a quasi-equilibrium state where uptake of
toxin and depuration balance out on a fast time scale. To investigate
this process mathematically we define ϵ¼ α1=σ1 to be a small
parameter. For example, we find that ϵ¼0.091 from the parameter
estimates for aquatic insects and rainbow trout (See Table 1).

4.1. Nondimensionalization and nonnegativity

To simplify the problem and facilitate analysis, we rescale the
system (11) by introducing the nondimensional quantities:

~x ¼ α3x; ~y ¼ α3ξ

α1
y; ~u ¼ α2u; ~v ¼ β2v; ~t ¼ α1t;

~k1 ¼
k1

α1α2
; ~m1 ¼

m1

α1
; ~η ¼ α3η;

~β1 ¼
β1ξ

α1
; ~k2 ¼

k2
α1β2

; ~m2 ¼
m2

α1
;

~T ¼ α2a1T
σ1

; c¼ a2β2
a1α2

; ~σ2 ¼
σ2
σ1
; ~β2 ¼

β2ξ

α2σ1
; ϵ¼ α1

σ1
: ð17Þ

Dropping the tildes for notational simplicity, we rewrite the
system (11) in its dimensionless form:

dx
dt

¼ maxf0;1�ug
1þx

�k1u�m1

� �
x� xy

ηþx
;

dy
dt

¼ β1xymaxf0;1�vg
ηþx

�ðk2vþm2Þy;

ϵ
du
dt

¼ T�u�ϵ
maxf0;1�ug

1þx
u;

ϵ
dv
dt

¼ cT�σ2vþðβ2u�ϵβ1 max 0;1�vf gvÞ x
ηþx

: ð18Þ

We first show that solutions of system (18) behave in a biologically
reasonable manner. That is, the population densities at any time,
which are given by the solutions of the model at time t, are always
nonnegative but not arbitrarily large.

Theorem 4.1. Each component of the solution of system (18) with
nonnegative initial conditions remains bounded and nonnegative for
all t40.

See Appendix A for the proof.

4.2. Quasi-steady system

Because the model (18) is a high dimensional system, the
stability analysis of model (18) is challenging. We simplify it to a
two-dimensional system via the quasi-steady state approximation.
Since ϵ is introduced as a small parameter, letting ϵ-0 in (18), we
have

u¼ T ; v¼ cT
σ2

þβ2T
σ2

x
ηþx

: ð19Þ

Substituting (19) into the first and second equations of (18), we
obtain the following quasi-steady system:

dx
dt

¼ maxf0;1�Tg
1þx

�k1T�m1

� �
x� xy

ηþx
;

dy
dt

¼
β1xymax 0;1�cT

σ2
�β2T

σ2

x
ηþx

� �
ηþx

� k2
cT
σ2

þβ2T
σ2

x
ηþx

� �
þm2

� �
y: ð20Þ

Throughout this paper, we assume that

m1o1 and Tominf1; σ2=cg: ð21Þ
These mean that the natural loss rate of the prey biomass due to
death is less than its maximum gain rate due to birth and growth,
and that the environmental toxin levels are low enough that the
prey can reproduce and grow. If either of these conditions is
violated then the prey cannot persist and both prey and predator
are extirpated (see Appendix B for further discussion).

We also assume that

m2oβ1: ð22Þ
This means that the natural loss rate of the predator biomass due
to death is less than its maximum gain rate due to birth and
growth. If this condition is violated then the predator is extirpated,
the system (20) reduces to a one species model (see Appendix B).

With these assumptions, the nondimensionalized system (20)
can be rewritten as

dx
dt

¼ f ðxÞ�φðxÞy;

dy
dt

¼ gðxÞy; ð23Þ
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Fig. 2. The stable biomass of the prey (aquatic insects) and the predator (rainbow
trout) when the concentration of methylmercury in the environment changes from
0 to 0:01 μg=L.
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with

f ðxÞ ¼ 1�T
1þx

�k1T�m1

� �
x; ð24Þ

φðxÞ ¼ x
ηþx

; ð25Þ

and

gðxÞ ¼ β1φðxÞmax 0;1�cT
σ2

�β2T
σ2

φðxÞ
� �

�k2cT
σ2

�k2β2T
σ2

φðxÞ�m2:

ð26Þ

4.2.1. Existence of equilibria
To investigate the long-term behavior of the system (23), we

look for the steady states (equilibria) where either one or both
species survive. These can be found by finding the intersections of
prey and predator zero-growth isoclines (or null-clines), where
either prey or predator growth rate is zero. We summarize the
existence of extirpation and coexistence equilibria and corre-
sponding conditions required in Table 2. The detailed discussion
is provided in Appendix C.

In Table 2,

Tn

0 ¼
1�m1

k1þ1
;

Tn

1≔
β1σ2ðβ1cþk2β2þ2β2m2Þ�β1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2ðβ1cþβ2m2Þðm2þk2Þ

p
ðβ1c�k2β2Þ2

;

Tn

2 ¼
ðβ1�m2Þσ2

β1β2þβ1cþk2β2þk2c
;

Tn

3 ¼
β1σ2

β1cþk2β2þ2β1β2
;

x0 ¼ ð1�TÞ=ðk1Tþm1Þ�1;

x1;2 ¼
ηφ1;2

1�φ1;2
;

φ1;2 ¼
β1ðσ2�cTÞ�k2β2T8

ffiffiffi
Δ

p

2β1β2T
;

Δ¼ ½β1ðσ2�cTÞ�k2β2T �2�4β1β2Tðk2cTþm2σ2Þ:
As shown in Table 2, the conditions of the existence of

equilibria are given by the restriction conditions with respect to
the toxin level in the environment T and the half-saturation
constant η that is related to the capture efficiency. Note that the
quantities Tn

0; T
n

1; T
n

2; T
n

3 are independent of T and η, if we assume
that these quantities are constant, then the magnitudes of toxin
concentration in the environment and the half-saturation constant
determine the number of equilibria.

It is worth mentioning that in row C of Table 2, the condition
TominfTn

0; T
n

1; T
n

2g guarantees that x040 and φ1o1, hence
x0=φ1�x040 and the condition ηox0=φ1�x0 plays a role.

Row D of Table 2 implies that very strict conditions are required
to guarantee the existence of another coexistence equilibrium E2.
The first condition maxfTn

2; T
n

3gominfTn

0; T
n

1g allows for the possi-
bility that the toxin level lies within the range (maxfTn

2; T
n

3go
TominfTn

0; T
n

1gÞ. The condition TominfTn

0; T
n

1g guarantees that
x040 and φ240. The condition T4maxfTn

2; T
n

3g guarantees that
φ2o1. Thus, x0=φ2�x040 and it is possible that the last condition
ηox0=φ2�x0 can be realized.

Recall that the half saturation constant η¼ 1=ðγhÞ (see Eqs. (8) and
(9)), where γ is the encounter rate (or capture efficiency) and h is the
handling time. If we assume that the handling time h is constant, then
a small half-saturation constant means that a high capture efficiency
and a large half-saturation constant correspond to a low capture
efficiency. Thus, the conditions ηox0=φ1�x0 and ηox0=φ2�x0 in
Table 2 can be interpreted as the predator requiring sufficiently high
capture efficiencies.

Fig. 3 illustrates several possible null-clines where either the
prey or the predator growth rate is zero. At the intersections of the
prey and predator null-clines, we find equilibrium points. In all
panels of Fig. 3, the conditions maxfTn

2; T
n

3gominfTn

0; T
n

1g and
maxfTn

2; T
n

3goTominfTn

0; T
n

1g are satisfied, hence the boundary
equilibria E0;1 and E0;2 always exist.

As shown in Fig. 3, depending on the values of η which
determines the intersections of the null-clines, the system may
have zero, one or two coexistence equilibria. In the left panel,
η4x0=φ1�x0, the system has no coexistence equilibrium. In the
middle panel, x0=φ2�x0oηox0=φ1�x0, the system has only one
coexistence equilibrium E1. In the right panel, ηox0=φ2�x0, the
system has two coexistence equilibria E1 and E2.

4.2.2. Stability of equilibria
To analyze the stability of an equilibrium, we may use the

Jacobian matrix if the eigenvalues of the Jacobian evaluated at the
equilibrium have nonzero real parts. The Jacobian matrix for
system (23) is

J ¼ f 0ðxÞ�φ0ðxÞy �φðxÞ
g0ðxÞy gðxÞ

 !
ð27Þ

To assess the stability of extirpation equilibrium E0;2, we need
another quantity measuring the external toxin level, that is,

Tn

4≔
β1σ2ðβ1cþk2β2þ2β2m2Þþβ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2ðβ1cþβ2m2Þðm2þk2Þ

p
ðβ1c�k2β2Þ2

:

ð28Þ
We make the following conclusions regarding the stability of

extirpation equilibria. The proof is provided in Appendix D.

Table 2
The existence of equilibria.

Mathematical conditions Equilibria Biological interpretations

A T4Tn

0 E0;1 ¼ ð0;0Þ System only has extinction equilibrium if external toxin level is high
enough that neither population persists

B ToTn

0 E0;1 and
E0;2 ¼ ðx0 ;0Þ

System has extinction and prey-only equilibria if toxin level is low enough
that prey can survival but predator cannot

C max Tn

2 ; T
n

3

� �
4min Tn

0 ; T
n

1

� �
Tomin Tn

0 ; T
n

1 ; T
n

2

� �
ηo x0

φ1
�x0

E0;1 ; E0;2, and

E1 ¼ x1 ;
f ðx1Þ
φðx1Þ

� � A coexistence equilibrium appears if toxin level and the half-saturation
constant are sufficiently low such that both populations can coexist

D max Tn

2 ; T
n

3

� �
omin Tn

0 ; T
n

1

� �
max Tn

2; T
n

3

� �
oTomin Tn

0 ; T
n

1

� �
ηo x0

φ2
�x0

E0;1 ; E0;2, E1,
and

E2 ¼ x2 ;
f ðx2Þ
φðx2Þ

� �
System has two coexistence equilibria when toxin level lies on a certain
range and the half-saturation constant is sufficiently low such that both
populations can coexist
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Theorem 4.2. (1) The extirpation equilibrium E0;1 ¼ ð0;0Þ is globally
asymptotically stable if T4ð1�m1Þ=ðk1þ1Þ. E0;1 is an unstable
saddle point if To ð1�m1Þ=ðk1þ1Þ.

(2) The prey-only equilibrium E0;2 ¼ ðx0;0Þ is locally asymptotically
stable if one of the following conditions is satisfied: (i) Tn

1oToTn

4,
(ii) ToTn

1 and η4x0=φ1�x0, and (iii) maxfTn

2; T
n

3gominfTn

0; T
n

1g,
maxfTn

2; T
n

3goTominfTn

0; T
n

1g, and ηo x0
φ2
�x0.

The mathematical results in Theorem 4.2 can be interpreted as
follows:

(1) If the external toxin level is sufficiently high (T4
ð1�m1Þ=ðk1þ1Þ), then from Table 2, we see that the extirpa-
tion equilibrium E0;1 ¼ ð0;0Þ is the only stable state of the
system. Hence the solutions of the system must tend towards
this equilibrium, which means that both populations are
extirpated.

(2) In the following scenarios, the prey can survive but the
predator cannot:
(i) If the external toxin level falls into a certain range

(Tn

1oToTn

4), only the prey can persist because the toxin
level is sufficiently low (ToTn

4). However, it is too high
(T4Tn

1oT) for the predator to persist.
(ii) The toxin level is sufficiently low (ToTn

1) such that the
prey can persist. The predator is extirpated because the
half-saturation constant is too large (η4x0=φ1�x0) (i.e.,
the capture efficiency is too low), which leads to a low
growth rate of the predator.

For coexistence equilibria, we have the following results. The
proof is provided in Appendix E.

Theorem 4.3. The equilibrium E1 is locally asymptotically stable if

either ηr1 or both conditions 0oηo1 and k1Tþm14
ð1� ηÞð1�TÞ
ð1þ x1Þ2

are

satisfied. The equilibrium E2 is always an unstable saddle point.

Combining the condition of existence (Table 2) and the condi-
tion of stability (Theorem 4.3) of the coexistence equilibrium E1,
we find that the both populations can coexist in the following two
scenarios:

(1) Both populations coexist at the equilibrium E1 if the half-
saturation constants lie within a certain range (1rηo x0

φ1
�x0)

(i.e., the capture efficiency lies within a certain range) and the
toxin-dependent mortality rate of the prey is sufficiently low
(k1Tþm1o ð1�TÞð1�φ1Þ). This is because of the condition of
the existence of E1, ηo x0

φ1
�x0, the condition ηZ1 plays a role

only when x0
φ1
�x041, which is equivalent to k1Tþm1o

ð1�TÞð1�φ1Þ.
(2) Both species coexist at the equilibrium E1 if the half-saturation

constants are sufficiently small (0oηo1) (i.e., the capture
efficiencies are sufficiently high) and the prey has an inter-

mediate mortality rate ðð1�ηÞð1�TÞ
ð1þx1Þ2

ok1Tþm1o 1�T
1þ x1

Þ.This is

because we can equivalently rewrite the condition of the
existence of E1, ηo x0

φ1
�x0, as k1Tþm1o 1�T

1þx1
. Thus, from

Theorem 4.3, we see that both populations are able to coexist

at E1 if both conditions 0oηo1 and ð1�ηÞð1�TÞ
ð1þ x1Þ2

ok1Tþ
m1o 1�T

1þ x1
are satisfied.

From the discussion in this section, we know that the quasi-
steady system (20) has at most two boundary equilibria E0;1 (both
extirpation) and E0;2 (only prey) and two interior (coexistence)
equilibria E1 and E2 which depends on the intersections of the
null-clines. We also show that the stability of these equilibria can
be guaranteed if the toxin level T and half saturation constant η
satisfy certain conditions.

5. Numerical observations of asymptotic dynamics

In this section, we show a variety of long-term asymptotic
dynamics that the system (20) may exhibit based on the results of
the existence and stability of equilibria. To do so, we plot phase
portraits (Figs. 4–7) using the existing openMATLAB program pplane8.
m by choosing different parameter values. The phase portraits
illustrate different types of eventual behavior of the populations.

As we observe from Figs. 4 to 7, The asymptotic dynamics (i.e., the
eventual behavior of the populations) can be grouped into six general
structures: extirpation of both species (extirpation equilibrium E0;1 is
globally asymptotically stable); prey-only extirpation (extirpation
equilibrium E0;2 is globally asymptotically stable); coexistence at an
interior equilibrium point (coexistence equilibrium E0;2 is globally
asymptotically stable); coexistence with periodical population oscilla-
tion which decreases in amplitude as T increases (system has a
globally asymptotic stable limit cycle); bistability where both the
extirpation equilibrium E0;2 and the interior equilibrium point E1 are
locally asymptotic stable; bistability where system has a stable limit
cycle and a stable prey-only equilibrium.

Fig. 4 shows several types of global stability. The top left panel
of Fig. 4 shows that both species are extirpated when the toxin
level in the environment T is high and leads to high population
mortality rates and low population growth rates. The top right
panel of Fig. 4 shows that the prey excludes the predator when
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half saturation constant η is large. In this scenario, the system has
no interior equilibrium (i.e., both species cannot coexist) even
though the toxin level T is low. In the bottom panel of Fig. 4, both
species are able to coexist at interior equilibrium because the
predation benefits the predator but is not too harmful to the prey
when the toxin level T is low.

Fig. 5 shows that the both species coexist but the population levels
oscillate periodically around the unstable interior equilibrium E1. With
limit-cycle oscillations, Fig. 5 clearly illustrates that the prey is reduced
to extremely low levels yet recovers while the predator remains above
a certain level even at the lowest prey population level.

In the previous section, we proved that E2 is always an
unstable saddle point when system has two interior equilibria
E1 and E2. Figs. 6 and 7 show that system has two alternative
stable states (bistability) when both interior equilibria E1 and E2
exist. The initial conditions determine which steady state the
system will tend towards. The stable manifolds of the unstable
interior equilibrium E2 indicate the edges of the basin of
attraction for each steady state. The bistability shown by Fig. 6
means that either the prey excludes the predator or both species
coexist at the interior equilibrium E1 depending on the initial
population levels.

Fig. 7 shows another type of bistability. That is, system has two
alternative stable states: either the prey excludes the predator or
both species coexist but with oscillating population levels. When

both species coexist but with oscillating population levels, both
equilibria E1 and E2 are unstable. The system will tend towards a
stable limit cycle only when the initial population fall in a small
domain which is the basin of attraction of the limit cycle.

6. Effects of toxin on population dynamics

The goal of this section is to study how the balance of classical
predator–prey dynamics will change as the concentration of a
toxin increases from zero to higher level. To do so, we first present
the results of classical predator–prey dynamics associated with
our toxin-dependent predator–prey dynamics. We then plot bifur-
cation dynamics for the toxin-dependent system by regarding the
external toxin level as a bifurcation parameter. The bifurcation
figures will clearly illustrate how the external toxin changes the
long-term asymptotic behavior of the prey and the predator.

6.1. A traditional predator–prey system

If there is no toxin (T¼0), then system (20) reduces to the
following prey–predator system:

dx
dt

¼ 1
1þx

�m1

� �
x� xy

ηþx
;
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dy
dt

¼ β1xy
ηþx

�m2y: ð29Þ

Regarding the existence and stability of the system (29), we
have the following results:

Lemma 6.1. Let 0om1o1 and m2oβ1.

(1) The boundary equilibrium E0;2 ¼ ð1=m1�1;0Þ exists. E0;2 is

globally asymptotically stable if η4 ð1�m1Þðβ1 �m2Þ
m1m2

.
(2) If ηo ð1�m1Þðβ1 �m2Þ

m1m2
, then system (29) has only one interior

equilibrium:

E1 ¼
m2η

β1�m2
;
ηβ1½ð1�m1Þðβ1�m2Þ�m1m2η�

ðβ1�m2Þðβ1�m2þm2ηÞ

� �
:

Assume that the interior equilibrium E1 exists, then E1 is globally
asymptotically stable if either ηZ1 or both the conditions

0oηo1 and ð1� ηÞðβ1 �m2Þ2
ðβ1 �m2 þm2ηÞ2

om1 are satisfied.

We interpret the mathematical results in Lemma 6.1 as follows.
First of all, the condition 0om1o1 means that the loss rate of the
prey biomass due to death is less than its maximum gain rate. If
this condition is violated then both populations are extirpated. The
condition m2oβ1 means that the loss rate of the predator biomass
is less than its maximum gain rate. If this condition is violated

then the predator is extirpated and the system (29) reduces to a
single species model:

(1) If the half-saturation constant is sufficiently large
	
η4

ð1�m1Þðβ1 �m2Þ
m1m2



(i.e., the capture efficiency is sufficiently low,

assuming that the handling time is constant), then the prey-
only equilibrium E0;2 is stable, which means that the prey
persists and the predator is eventually extirpated.

(2) Combining the conditions of existence and stability of coex-
istence equilibrium E1, we find that both the species coexist in
the following two scenarios:
(i) Both populations coexist at the equilibrium E1 when the half-

saturation constant is relatively large
	
1rηo ð1�m1Þðβ1 �m2Þ

m1m2



(i.e., the capture efficiency is relatively low) and the mortality
rate of the predator is sufficiently low (m2o ð1�m1Þβ1). This
is because if 1o ð1�m1Þðβ1 �m2Þ

m1m2
, which is equivalent to

m2o ð1�m1Þβ1, then both populations are able to coexist

if the condition 1rηo ð1�m1Þðβ1 �m2Þ
m1m2

is also satisfied.
(ii) Both populations coexist at the equilibrium E1 if the half-

saturation constant is sufficiently small (0oηo1) (i.e., the
capture efficiency is sufficiently high) and the prey

has an intermediate mortality rate
	
ð1� ηÞðβ1 �m2Þ2
ðβ1 �m2 þm2ηÞ2

om1o
β1 �m2

β1 �m2 þm2η



. This is because we can equivalently rewrite

the condition of the existence of E1, ηo ð1�m1Þðβ1 �m2Þ
m1m2

, as

m1o β1 �m2
β1 �m2 þm2η

, then both populations are able to coexist at

E1 if both conditions 0oηo1 and
ð1� ηÞðβ1 �m2Þ2
ðβ1 �m2 þm2ηÞ2

om1o β1 �m2
β1 �m2 þm2η

are satisfied.

Lemma 6.2. If 0oηo1 and m1o ð1� ηÞðβ1 �m2Þ2
ðβ1 �m2 þm2ηÞ2

, then the system has

a coexistence equilibrium E1 which is unstable, and the system (29)
possesses a unique limit cycle which is stable.

Lemma 6.2 implies that both species coexist, but their densities
fluctuate periodically if the half-saturation constant is sufficiently
small (0oηo1) (i.e., the capture efficiency is sufficiently high) and

the mortality rate of the prey is sufficiently low
	
m1o ð1� ηÞðβ1 �m2Þ2

ðβ1 �m2 þm2ηÞ2


.

The stable limit cycle in Lemma 6.2 means that the prey and the
predator coexist, but their densities fluctuate periodically. Similar to
most standard predator–prey system, system (29) possesses three
possible globally asymptotic stable state: prey only, coexistence at an
equilibrium point, and coexistence at a limit cycle.

6.2. Dependence of stable population density on external toxin

In what follows, we consider how different toxin concentra-
tions in the aquatic environment affect the predator–prey
dynamics. To this end, we turn to the toxin-dependent system
(20) and analyze the sensitivity of asymptotically stable states
(equilibria) with respect to toxin level T. This sensitivity analysis
illustrates how the stable densities of prey and predator vary when
the toxin level in the environment increases from zero to a higher
level. Mathematically, this can be done by treating stable equilibria
(including the stable prey and predator densities) as a function of
T, then calculating the rate of change of stable prey and predator
densities with respect to T (see Appendix F).

We know from Table 2 and Theorem 4.2 that system (20) has a
stable prey-only equilibrium E0;2 ¼ ðx0;0Þ if external toxin levels
are sufficiently high. The results of our sensitivity analysis imply
that the prey density x0 decreases as the toxin level T increases.
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Fig. 5. System shows globally stable limit cycle. (top) Phase portraits of the
predator density versus the prey density. (bottom) Solution curves (solid curve
represents the prey density and dashed curve is the predator density). System has
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That is, high concentrations of toxin in the environment are always
harmful to the prey.

If the external toxin levels are sufficiently low, say Tomin
fTn

0; T
n

1; T
n

2g (Table 2), and the half-saturation constants satisfy
certain conditions (Table 2 and Theorem 4.3), then the system
has a stable coexistence equilibrium E1 ¼ ðx1; y1Þ. For this scenario,
our analysis shows that y1 is always a decreasing function of T,
which means that toxin is always harmful to the predator,
increasing toxin levels lead to decreasing predator density. How-
ever, toxin affects the asymptotic prey density in a different way:
x1 increases as the toxin level T increases from 0 to minfTn

0; T
n

1; T
n

2g
until the system shifts from the stable state of coexistence to prey-
only state when the toxin level reaches the threshold value
minfTn

0; T
n

1; T
n

2g. This threshold value determines whether a given
toxin level is beneficial or harmful to the prey. The bifurcation
dynamics shown in Fig. 8 in the next subsection illustrates our
results of asymptotic analysis regarding the relationship between

the stable population density and the toxin level in the
environment.

6.3. Bifurcation dynamics

To further understand the effects of the toxin on predator–prey
dynamics, next we plot the bifurcation dynamics of the system
with respect to the toxin concentration T. In particular, we choose
a set of parameters such that both species coexist at an interior
equilibrium or limit cycle when there is no toxin (T¼0). We then
examine how these stable population densities will vary as T
increases from zero to higher concentration.

Figs. 8–11 illustrate that the toxin concentration in the envir-
onment affects the population dynamics in many different ways.
In Fig. 8, when T¼0, both species coexists at an interior equili-
brium. As T increases but still at a low concentration, the prey
benefits since the stable predator density decreases. That is,
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Fig. 6. System shows bistability with a locally stable coexistence equilibrium E1 and a locally stable extirpation equilibrium E0;2. The trajectories either converge to E1 or
converge to E0;2. (top row) Phase portraits of the predator density versus the prey density. (bottom row) Solution curves. The solution with initial point ð0:1;0:2Þ converges to
E1 (bottom left). The solution with initial point ð0:1;0:5Þ converges to E0;2 (bottom right). The system has two coexistence equilibria E1 ¼ ð0:28;0:42Þ which is stable spiral
node and E2 ¼ ð0:84;0:25Þ which is an unstable saddle point. Boundary equilibrium E0;1 ¼ ð0;0Þ is an unstable saddle point. Boundary equilibrium E0;2 ¼ ð1:67;0Þ is stable
node. Circles indicate equilibrium points. The parameters η¼1, other parameters are the same as those in Fig. 3.
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contaminant effects on predators release the prey from predation,
which lead to increased abundance of the prey. As T continues to
increase, the stable prey level decreases and the predator is
extirpated. Finally, if we increase T further, both species are
extirpated. These results indicate that the low toxin concentration
benefits the prey by reducing the predator abundance.

In Fig. 9, when T¼0, both species coexists but oscillate around
an unstable interior equilibrium. As T increases but still at a low
concentration, population densities oscillate but with decreasing
amplitudes until they reach a stable state at an interior equili-
brium. As we continue to increase T further, similar dynamics to
those in Fig. 8 are displayed. The unstable asymptotic behavior of
the populations can be stabilized by increasing T. It seems that a
high toxin environment excludes predator–prey cycles, which can
be a disaster for the persistence of a predator–prey.

Figs. 10 and 11 show that the populations have alternative stable
states over a certain range of T. In Fig. 10, the types of stable states

vary in order as T increases. when T¼0, both species coexist at an
interior equilibrium. As T increases but still at low concentration, it
benefits the prey since the stable predator density decreases. As we
continue to increase T, the population densities tend to move to
alternative stable states: either to a prey-only state or coexistence at
an interior equilibrium. As T increases further, the coexistence state
disappears and the population densities tend to a prey-only state.
Finally, if we increase T even further, the stable prey density
decreases until both species are extirpated.

In Fig. 11, both species coexists at a limit cycle when T¼0. As T
increases, population abundances continue to fluctuate but with
decreasing amplitudes until they reach a bistable state: a stable
limit cycle and a prey-only equilibrium. As we continue to increase
T, the limit cycle disappears and another type of biostability
appears: a stable coexistence equilibrium and a prey-only equili-
brium. As T increases further, the coexistence state disappears and
the population densities tend to the prey-only state. Finally, if we
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Fig. 7. System shows bistability with a locally stable limit cycle and a locally stable extirpation equilibrium E0;2, The stable manifold of the limit cycle and the stable manifold
of E0;2 are depicted by bold curve. (top row) Phase portraits of the predator density versus the prey density. (bottom row) Solution curves. The solution with initial point
ð0:1;0:2Þ, which belongs to the stable manifold of the limit cycle, oscillates periodically as shown by the limit cycle (bottom left). The solution with initial point ð0:2;0:2Þ,
which is outside the limit cycle, converges to E0;2 ¼ ð1:67;0Þ (bottom right). System has two coexistence equilibria E1 ¼ ð0:14;0:26Þ which is unstable spiral source and
E2 ¼ ð0:42;0:24Þwhich is an unstable saddle point. Boundary equilibrium E0;0 ¼ ð0;0Þ is an unstable saddle point. Boundary equilibrium E0;2 ¼ ð1:67;0Þ is a stable node. Circles
indicate equilibrium points. The parameters η¼0.5, other parameters are the same as those in Fig. 3.
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increase T even further, the stable prey density decreases until
both species are extirpated.

Figs. 8–11 highlight several key points: (1) High toxin concentra-
tion in the environment is harmful to both species, and it may lead to
extirpation of both species. (2) The population dynamics are counter-
intuitive when both the prey and the predator are exposed in an
environment with low concentration of toxin. That is, low toxin
concentration benefits the prey because the bioaccumulation of toxin
in the predator reduces the predator abundance, which releases its
prey from predation. (3) The amplitude of population oscillation
around the unstable coexistence equilibrium can be reduced until it
stabilizes at a coexistence equilibrium, as the toxin concentration
increases. (4) Certain toxin levels may lead to more than one
asymptotic population density of either the prey or the predator. In
this scenario, the initial population density of the prey or the
predator determines its eventual population density.

7. Discussion

Contamination by toxic pollutants is a significant problem in water
management (Helmer and Hespanhol, 1997). The effect of a toxic
contaminant can, in principle, be exerted on all levels of the biological
hierarchy, from cells to organs to organisms to populations to entire
ecosystems. Mathematical models are useful tools for evaluating the
ecological significance of observed or predicted effects of toxic chemi-
cals on individual organisms and population dynamics. Most toxin-
dependent single-species models (e.g., Freedman and Shukla, 1991;
Hallam and Clark, 1983; Hallam et al., 1983; Luna and Hallam, 1987;
Thieme, 2003; Thomas et al., 1996; Huang et al., 2013) assume that
populations take up contaminants fromwater and ignore bioaccumula-
tion (contaminant uptake, excretion, and contaminant transfer through

aquatic food chain) These single-species models cannot predict the
effects of toxin on species interactions, nutrient cycling, or contaminant
flow in aquatic systems.

Motivated by the fact that many aquatic organisms take up
contaminants both from water and from food (their prey), we
developed a toxin-dependent predator–prey model by assuming that
the prey and the predator are exposed simultaneously to a toxin.
Unlike those existing toxin-dependent food web models (e.g., Kooi
et al., 2008; Garay-Narväez et al., 2013, 2014) which describe the
interactions between populations, toxin in the populations, and toxin
in the environment, our model focuses on the impact of toxin on the
populations and ignores the influence of the population on the toxin
in the environment. To facilitate model analysis, we approximated
the model with a two dimensional system because population
metabolism takes place over a much faster time scale than popula-
tion growth does. We then analyzed the existence and stability of
extirpation and coexistence equilibria based on the two dimensional
system. The conditions that guarantee the existence and stability of
equilibria provide meaningful biological interpretations. For instance,
high toxin concentrations in the environment lead to the extirpation
of prey and predators, and low toxin concentrations lead to the
coexistence of both populations. However, intermediate toxin con-
centrations result in two alternative stable states: a prey-only
equilibrium and coexistence of prey and predators. In this scenario,
the initial conditions determine which steady state the populations
will tend towards. The results of model analysis were then used to
show all possible asymptotic behaviors of the system. To do this, we
plotted a series of phase portraits to identify possible outcomes.
These outcomes suggest that our toxin-dependent system has richer
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dynamics than traditional predator–prey system due to the existence
of two interior equilibria and bistability.

Predator–prey interactions are one of the central themes in
ecology (Matia and Alam, 2013). The dynamics of traditional
predator–prey systems have been well documented (Cheng,
1981; Hsu, 1977; Hsu and Huang, 1995; Sugie et al., 1997). The
main aim of the present study is to investigate how the balance of
a traditional predator–prey system (without a toxin effect) will
change when the prey and the predator are exposed in an aquatic
environment where toxins may be present at low levels. To this
end, we focused on bifurcation dynamics with toxin level as a
bifurcation parameter. As shown in Figs. 8–11, our toxin-
dependent model exhibits rich dynamics including transcritical,
Hopf, and backward bifurcations. Our results imply that sublethal
contaminant effects on predator–prey interactions can be counter-
intuitive. That is, increased toxin level can have a positive effect on
prey persistence, even though it has a negative effect on predator
persistence. This is because the bioaccumulation of toxin in the
predator reduces the predator abundance, which releases its prey
from predation. In addition, our findings indicate that toxins may
also reduce population variability by preventing populations from
fluctuating around a coexistence equilibrium, which often occur in
traditional predator–prey systems.

For model analysis, since the study of the linear stability of
coexistence equilibria of four-dimensional system (18) is intract-
able, we mainly focused on local stable analysis of equilibria based
on the quasi-steady system (20). However, it might be possible to
study analytically the stability of the boundary equilibria of system

(18) that correspond to the equilibria of the reduced system in
rows A and B of Table 2. Moreover, as we observed in Section 5, the
quasi-steady system (20) has several types of phase portraits, we
believe that the global dynamics will provide more clear insights
into the effects of a toxin on long-term behaviors, but this is a
challenging task and is left for future work.

Species in different trophic levels may have different sensitivities to
each toxin. We hope to encourage the connection of the model with
data to other species and toxins of interest. The bifurcation analysis in
Section 6.3 can provide threshold values of toxin concentration in the
environment for the persistence of one or both species. The threshold
value for shifting the system from one stable state to another can also
be observed. This will help evaluate acute and chronic guideline
developments for target species and chemicals.

Our model assumes that concentration of the toxin in the
environment is a constant. In reality, the toxin concentration may
vary over time (and space, if sediment and plant uptake and release
are considered) due to a variety of factors. In addition, we have only
considered the interaction between one predator species and one prey
species. When toxins flow across multiple prey and predators, the
outcome can be more complicated. Our model also assumes that the
capture rate in Holling's type II function response is a constant. In
practice, contaminant-induced changes in a population's behavior may
also lead to abundance changes in prey and predator populations. For
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0 ¼ 0:45, Tn

1 ¼ 0:21, Tn

2 ¼ 0:15, Tn

3 ¼ 0:097 (see
Table 2). Note that the condition maxfTn

2 ; T
n

3gominfTn

0 ; T
n

1g is satisfied, the system
has two coexistence equilibria. When 0:193oTo0:208, the system has bistability,
which is highlighted at the top right corners of the panels.
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Fig. 11. Bifurcation diagram with respect to toxin level T. The system has two types
of bistabilities. The highest and lowest values of x-coordinates and y-coordinate of
stable limit cycles (open circles), x-coordinates and y-coordinates of unstable
coexistence equilibria (thin solid curves), x-coordinates and y-coordinates of stable
coexistence equilibria and prey-only equilibria (thick solid curves). HB: Hopf
bifurcation, TB: Transcritical bifurcation, BB: Backward bifurcation. Parameters:
η¼0.12, β1 ¼ 0:75, m2¼0.1, k1¼0.1, k2¼0.1, σ2 ¼ 1, β2 ¼ 2, c¼0.5. Here Tn

0 ¼ 0:50,
Tn

1 ¼ 0:39, Tn

2 ¼ 0:31, Tn

3 ¼ 0:21 (see Table 2). Note that the condition
maxfTn

2 ; T
n

3gominfTn

0 ; T
n

1g is satisfied, the system has two coexistence equilibria.
When 0:352oTo0:388, the system has bistability, which is highlighted at the top
right corners of the panels.
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example, the dynamics might be very different if predators prefer
“toxic” prey (because they are slower, sicker, easier to catch) versus if
they avoid toxic prey (because they taste bad or they know that the
toxin is bad for them). Further consideration of these factors in the
model framework is required to investigate this problem. We expect
that the main results we obtained in this study are robust, even
though the details will certainly change if we include these factors in
the model.

In this paper, we develop a comprehensive framework for
understanding impacts of toxins on multitrophic population
dynamics. Although our toxin-dependent predator–prey system
is developed based on an aquatic environment, the model and the
results in this study are applicable to predator–prey systems in
terrestrial ecosystems.
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Appendix A. Proof of Theorem 4.1

Proof. Positivity obviously holds for the system (18). Let
zðtÞ ¼ β1xðtÞþyðtÞ and differentiating z once yields

dz
dt

¼ β1
maxf0;1�ug

1þx
�k1u�m1

� �
x

�β1
xy
ηþx

þβ1xymaxf0;1�vg
ηþx

�ðk2vþm2Þy
rβ1�β1m1x�m2y

rβ1�minfm1;m2gz; ð30Þ

which implies

lim sup
t-1

zðtÞr β1
minfm1;m2g

and

zðtÞrmax
β1

minfm1;m2g
; zð0Þ

� �
: ð31Þ

On the other hand, from the third equation of the system (18), we
have

ϵ
du
dt

rT�u; ð32Þ

Similar to the argument on zðtÞ, we can conclude that

lim sup
t-1

uðtÞrT : ð33Þ

Thus, given δ40, there exists t040 such that uðtÞoTþδ for all
t4t0. Therefore, from the fourth equation of the system (18), we
obtain

ϵ
dv
dt

rcT�σ2vþβ2urcTþβ2ðTþδÞ�σ2v; ð34Þ

which indicates that v(t) is also ultimately bounded.□

Appendix B. Argument about the assumptions (21)–(22)

Clearly, if m1Z1, then for any xZ0 and TZ0,

maxf0;1�Tg
1þx

�k1T�m1o
1

1þx
�m1o1�m1o0;

thus limt-1xðtÞ ¼ 0, which will lead to limt-1yðtÞ ¼ 0.
If TZ1, then maxf0;1�Tg ¼ 0, thus limt-1xðtÞ ¼ 0, limt-1

yðtÞ ¼ 0.
Similarly, if cTZσ2, then maxf0;1�cT=σ2�β2Tx=ðσ2ðηþxÞÞg ¼ 0,

thus limt-1yðtÞ ¼ 0.
If m24β1, then for any xZ0 and TZ0,

β1xmax 0;1�cT
σ2

�β2T
σ2

x
ηþx

� �
ηþx

�k2
cT
σ2

þβ2T
σ2

x
ηþx

� �
�m2oβ1�m2o0;

thus, limt-1yðtÞ ¼ 0, and the system (20) reduces to a single
species model.

Appendix C. Existence of equilibria

The prey x-nullclines

x¼ 0; y¼ f ðxÞ
φðxÞ; ð35Þ

and the predator y-nullclines are

gðxÞ ¼ 0 or y¼ 0: ð36Þ
From the intersections of the nullclines, we find that the system

has only one extinction equilibrium E0;1 ¼ ð0;0Þ if
TZ ð1�m1Þ=ðk1þ1Þ≔Tn

0, and the system has an extinction equili-
brium E0;1 and a prey-only equilibrium E0;2 ¼ ðx0;0Þ if ToTn

0 with
x0 ¼ ð1�TÞ=ðk1Tþm1Þ�1.

The interior equilibria (coexistence equilibria) can be found by
setting

gðxÞ ¼ 0 and y¼ f ðxÞ
φðxÞ40: ð37Þ

Noticing that φðxÞ is an increasing positive function on ð0;1Þ,
we require

f ðxÞ ¼ 1�T
1þx

�k1T�m1

� �
x40; ð38Þ

that is, ToTn

0 and 0oxo ð1�TÞ=ðk1Tþm1Þ�1≔FðφÞ ¼ x0. The
second condition is equivalent to

φðxÞoφðx0Þ: ð39Þ
Also, if φðxÞZ ðσ2�cTÞ=β2T , then maxf0;1�cT=σ2�β2TφðxÞ=σ2g

¼ 0. In this case, gðxÞo0. Hence, we require

φðxÞoσ2�cT
β2T

: ð40Þ

When (40) holds, function g(x) becomes

gðxÞ ¼ β1φðxÞ 1�cT
σ2

�β2T
σ2

φðxÞ
� �

�k2cT
σ2

�k2β2T
σ2

φðxÞ�m2

¼ � 1
σ2

β1β2TðφðxÞÞ2�ðβ1ðσ2�cTÞ�k2β2TÞφðxÞþk2cTþm2σ2
h i

:

ð41Þ
Therefore, system (23) has coexistence equilibrium if and only

if the quadratic equation with respect to φ≔φðxÞ
β1β2Tφ

2�½β1ðσ2�cTÞ�k2β2T �φþk2cTþm2σ2 ¼ 0 ð42Þ
has at least one positive root which satisfies

φomin
σ2�cT
β2T

;φðx0Þ
� �

: ð43Þ
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Let

Δ≔½β1ðσ2�cTÞ�k2β2T�2�4β1β2Tðk2cTþm2σ2Þ: ð44Þ
Notice if ΔZ0, the quadratic equation (42) has either two

positive roots (when β1ðσ2�cTÞ�k2β2T40) or two negative roots
(when β1ðσ2�cTÞ�k2β2To0).

Thus, we require that (42) has two positive roots. We also find
that (42) has two positive roots

φ1;2 ¼
β1ðσ2�cTÞ�k2β2T8

ffiffiffi
Δ

p

2β1β2T
; ð45Þ

if and only if the following condition holds:

β1ðσ2�cTÞ�k2β2T42
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1β2Tðk2cTþm2σ2Þ

q
: ð46Þ

Next, we equivalently rewrite the condition (46) into a restriction
condition with respect to T. Firstly, the condition (46) implies that
β1ðσ2�cTÞ�k2β2T40, which is equivalent to

To β1σ2
β1cþk2β2

: ð47Þ

Secondly, if we introduce a function G with respect to T,

GðTÞ ¼ β1ðσ2�cTÞ�k2β2T�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1β2Tðk2cTþm2σ2Þ

q
: ð48Þ

Then G is a decreasing function of T. Solving GðTÞ ¼ 0, we can get a
threshold value of T, which is

T ¼ β1σ2ðβ1cþk2β2þ2β2m2Þ�β1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2ðβ1cþβ2m2Þðm2þk2Þ

p
ðβ1c�k2β2Þ2

≔Tn

1:

ð49Þ
Clearly, Gðβ1σ2=ðβ1cþk2β2ÞÞo0, since GðTnÞ ¼ 0 and Gð�Þ is a

decreasing function, so Tnoβ1σ2=ðβ1cþk2β2Þ.
Therefore, a combination of (47) and (49) yields that the

condition (46) is equivalent to

ToTn

1: ð50Þ
We now require φ1 and (or) φ2 satisfy the condition (43). We

notice that

φ1oφ2o
σ2�cT
β2T

: ð51Þ

In fact, we have

φ2o
σ2�cT
β2T

3
β1ðσ2�cTÞ�k2β2Tþ

ffiffiffi
Δ

p

2β1β2T
oσ2�cT

β2T

3
ffiffiffi
Δ

p
oβ1ðσ2�cTÞþk2β2T

3Δoðβ1ðσ2�cTÞþk2β2TÞ2
3�4β1β2Tσ2ðk2þm2Þo0; ð52Þ

which is true. Thus, the existence of coexistence equilibrium
depends on whether or not φ1;2oφðx0Þ.

Noticing that 0oφðx0Þ ¼ x0=ðηþx0Þo1 and φ1 and φ2 do not
depend on η (see Eq. (45)), we can choose appropriate η such that
φ1;2oφðx0Þ if φ1;2o1.

From (45), we find that φ1o1oφ2 if

To ðβ1�m2Þσ2
β1β2þβ1cþk2β2þk2c

≔Tn

2; ð53Þ

and φ1oφ2o1 if

T4maxfTn

2; T
n

3g; ð54Þ
where

Tn

3 ¼
β1σ2

β1cþk2β2þ2β1β2
: ð55Þ

Therefore, if TominfTn

0; T
n

1; T
n

2g and ηox0=φ1�x0, then system

(23) has only one coexistence equilibrium E1 ¼
	
x1;

f ðx1Þ
φðx1Þ



, where x1

is given by φ1 ¼ φðx1Þ. More precisely, since φ1 ¼ x1=ðηþx1Þ, we
have x1 ¼ ηφ1=ð1�φ1Þ.

If Tn

3ominfTn

0; T
n

1g, then system (23) has two coexistence

equilibria E1 and E2 ¼
	
x2;

f ðx2Þ
φðx2Þ



with x2 ¼ ηφ2=ð1�φ2Þ when

Tn

3oTominfTn

0; T
n

1g and ηox0=φ2�x0.

Appendix D. Proof of Theorem 4.2

Proof. At E0;1, where both prey and predator are extinct, the
Jacobian is

JðE0;1Þ ¼
f 0ð0Þ �φð0Þ
g0ð0Þ gð0Þ

 !
¼

1�T�k1T�m1 0

0 �k2cT
σ2

�m2

0
B@

1
CA

ð56Þ
and the eigenvalues are the components on the diagonal:

λ1 ¼ 1�T�k1T�m1; λ2 ¼ �k2cT
σ2

�m2: ð57Þ

If k1Tþm1þT41, then E0;1 is a stable node because both
eigenvalues of JðE0Þ are negative. Moreover, only the boundary
equilibrium E0;1 is feasible when k1Tþm1þT41. Because solu-
tions are bounded, solutions must converge to E0;1. If
k1Tþm1þTo1, then E0;1 is a saddle point because the two real
eigenvalues are of opposite sign.

The Jacobian at E0;2, where only the prey survives, is

JðE0;2Þ ¼
f 0ðx0Þ �φðx0Þ
0 gðx0Þ

 !
ð58Þ

and the eigenvalues are

λ1 ¼ f 0ðx0Þ ¼
ðk1Tþm1ÞðTþk1Tþm1�1Þ

1�T
; λ2 ¼ gðx0Þ: ð59Þ

The condition of the existence of E0;1, Tþk1Tþm1o1, implies that
λ1o0. Thus, the stability of E0;1 can be determined by the sign of
eigenvalue of gðx0Þ. That is, E0;1 is a stable (unstable) node (saddle
point) if gðx0Þo ð4 Þ0.

Next, we investigate the condition gðx0Þo0 further under
which E0;1 is a stable node. Let φ0 ¼ x0=ðηþx0Þ, using (41) and
(42) we find that gðx0Þo0 is equivalent to

β1β2Tφ
2
0�½β1ðσ2�cTÞ�k2β2T �φ0þk2cTþm2σ2≔Fðφ0Þ40 ð60Þ

Using the same discriminant Δ as in (44), we consider the
following cases:

(i) If Δo0, then Fðφ0Þ represents a parabola which opens
upward and does not intersect φ0-axis, then Fðφ0Þ40 for
any φ0. From the discussion about the existence of equili-
bria (see Appendix C), we can easily find that Δo0 is
equivalent to

Tn

1oToTn

4; ð61Þ
where

Tn

4≔
β1σ2ðβ1cþk2β2þ2β2m2Þþβ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2ðβ1cþβ2m2Þðm2þk2Þ

p
ðβ1c�k2β2Þ2

ð62Þ

(ii) If Δ40 and β1ðσ2�cTÞ�k2β2To0 (i.e., T4β1σ2=ðβ1cþk2β2Þ),
then Fðφ0Þ represents a parabola which opens upward and
intersects half φ0-axis, then Fðφ0Þ40 since φ040. Again,
from the discussion about the existence of equilibria (see
Appendix), we know that Δ40 is equivalent to ToTn

1 and
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Tn

1oβ1σ2=ðβ1cþk2β2Þ. Therefore, the condition Δ40 con-
tracts the condition β1ðσ2�cTÞ�k2β2To0.

(iii) If Δ40 and Toβ1σ2=ðβ1cþk2β2Þ (note that Δ40 is equiva-
lent to ToTn

1 and Tn

1oβ1σ2=ðβ1cþk2β2Þ), then Fðφ0Þ repre-
sents a parabola which opens upward and intersects positive
φ0-axis, Fðφ0Þ ¼ 0 has two positive roots φ1 and φ2 (φ1oφ2).
Thus, Fðφ0Þ40 when φ0oφ1 (i.e., η4x0=φ1�x0) or φ04φ2

(i.e., ηox0=φ2�x0).

From (i)–(iii), we conclude that the prey-only equilibrium E0;2 is
locally asymptotically stable if one of the following conditions is
satisfied: (1) Tn

1oToTn

4, (2) ToTn

1 and η4x0=φ1�x0, (3) ToTn

1
and ηox0=φ2�x0. Note that the condition plays a role only when
the conditions maxfTn

2; T
n

3gominfTn

0; T
n

1g and maxfTn

2; T
n

3goTo
minfTn

0; T
n

1g are satisfied (see Section 3.1.1).□

Appendix E. Proof of Theorem 4.3

Proof. At coexistence equilibria Ei ði¼ 1;2Þ, where both prey and
predator coexist, the Jacobian is

JðEiÞ ¼
f 0ðxiÞ�φ0ðxiÞ

f ðxiÞ
φðxiÞ

�φðxiÞ

g0ðxiÞ
f ðxiÞ
φðxiÞ

0

0
BBB@

1
CCCA ð63Þ

and the characteristic equation is

λ2� f 0ðxiÞ�φ0ðxiÞ
f ðxiÞ
φðxiÞ

� �
λþg0ðxiÞf ðxiÞ ¼ 0: ð64Þ

For the equilibrium E1, simple calculation gives

g0ðx1Þ ¼ � 1
σ2
½2β1β2Tφðx1Þ�β1ðσ2�cTÞþk2β2TÞ�φ0ðx1Þ ¼

ffiffiffi
Δ

p
φ0ðx1Þ
σ2

40:

ð65Þ

Since the quantities g0ðx1Þ and f ðx1Þ are positive, the Routh–
Hurwitz criterion guarantees that equilibria E1 are stable if

f 0ðx1Þ�φ0ðx1Þ
f ðx1Þ
φðx1Þ

o0: ð66Þ

Note that

f 0ðx1Þ�φ0ðx1Þ
f ðx1Þ
φðx1Þ

¼ φðx1Þ
f ðx1Þ
φðx1Þ

� �0
; ð67Þ

and φðx1Þ40, the (66) is equivalent to

f ðx1Þ
φðx1Þ

� �0
o0: ð68Þ

simple calculation yields

f ðx1Þ
φðx1Þ

� �0
¼ ð1�TÞð1�ηÞ

ð1þx1Þ2
�ðk1Tþm1Þ: ð69Þ

Clearly, if η41, then condition (68) is satisfied, E1 is stable. If ηo1,
then (68) is equivalent to

k1Tþm1o
ð1�TÞð1�ηÞ
ð1þx1Þ2

: ð70Þ

Therefore, E1 is stable either ηZ1 or both conditions 0oηo1

and k1Tþm1o ð1�TÞð1� ηÞ
ð1þ x1Þ2

are satisfied.□

Appendix F

Analytical calculations on the sensitivity of stable population density
on toxin

If the system (23) has a stable prey-only equilibrium E0;2 ¼ ðx0;0Þ
with x0 ¼ ð1�TÞ=ðk1Tþm1Þ�1, then the stable prey density
decreases as the toxin level T increases because x0 is a decreasing
function of T.

If the condition

f ðx1Þ
φðx1Þ

� �0
o0 ð71Þ

is satisfied (here 0 denote the derivative with respect to x), then the
system (23) has a stable coexistence equilibrium E1 ¼ ðx1; y1Þ with

x1 ¼ ηφ1
1�φ1

and y1 ¼ f ðx1Þ
φðx1Þ≔

f ðx1Þ
φ1

, where φ1 is given by the following

quadratic equation (see (42)):

β1β2Tφ
2
1�½β1ðσ2�cTÞ�k2β2T �φ1þk2cTþm2σ2 ¼ 0: ð72Þ

Differentiating both sides of the above equation with respect to T,
we have

∂φ1

∂T
¼ �ðβ1β2φ2

1þk2β2φ1þβ1cφ1þk2cÞ
2β1β2Tφ1þk2β2Tþβ1cT�β1σ2

: ð73Þ

Applying (44) to the above equation, we have

∂φ1

∂T
¼ �ðβ1β2φ2

1þk2cþφ1k2β2þφ1β1cÞ
�

ffiffiffi
Δ

p 40: ð74Þ

Therefore,

∂x1
∂T

¼ ∂x1
∂φ1

∂φ1

∂T
40; ð75Þ

since ∂x1=∂φ140 is obvious from x1 ¼ ηφ1=ð1�φ1Þ.
That is, if the system stabilizes at the coexistence equilibrium

E1 ¼ ðx1; y1Þ, then the stable prey density always increases as the
toxin level T increases:

∂y1
∂T

¼ f ðx1Þ
φðx1Þ

� �0∂x1
∂T

o0: ð76Þ

That is, if the system stabilizes at the coexistence equilibrium
E1 ¼ ðx1; y1Þ, then the stable predator density always decreases as
the toxin level T increases.
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